
Bistability of persistent currents in mesoscopic rings

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 1095

(http://iopscience.iop.org/0953-8984/9/5/014)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 06:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 1095–1103. Printed in the UK PII: S0953-8984(97)73634-8

Bistability of persistent currents in mesoscopic rings

E V Anda†, V Ferrari‡ and G Chiappe‡
† Instituto de F́ısica, Universidade Federal Fluminense, Avenida General Milton Tavares de
Souza s/n, 24210-340 Gragoata, Niteroi, Rio de Janeiro, Brazil
‡ Departamento de Fı́sica, FCEYN–Universidad de Buenos Aires, CP 1428 Nuñez, Buenos
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Abstract. We study the persistent currents flowing in a mesoscopic ring threaded by a magnetic
flux and connected to a stub of finite length. Multistability processes and Coulomb blockade
are demonstrated to be present in this system. These properties are functions of the magnetic
flux crossing the ring which plays the role that the external applied potential fulfills in the
multistability behaviour of the standard mesoscopic heterostructures.

1. Introduction

The existence of persistent currents in a conducting mesoscopic ring threaded by a magnetic
flux was proposed by B̈uttiker et al [1] and experimentally observed in an ensemble of rings
and in semiconductor and metallic loops [2]. In a ring, the magnetic flux can be introduced
through a boundary condition for the electronic wave function.

8(x + 2πr) = 8(x) e2π iφ/φ0 (1)

wherer is the radius of the ring ,φ0 = h/e is a quantum of magnetic flux andφ is the
real magnetic flux encircled by the loop. Equation (1) introduces a periodicity to all the
physical properties of the system as a function ofφ with the period associated withφ0. For
a particular energy level the persistent current flowing along the system can be obtained by
calculating the derivative of the energy with respect to the magnetic flux. The total current
is obtained summing the contributions over all the occupied states below the Fermi level.

Since the original experiment [2] there has been a considerable theoretical effort to
understand currents and current fluctuations of non-interacting electrons in open and closed
rings [3, 4]. Many works have been devoted to studying the effect of electronic interaction
upon the current in closed rings and the interplay between correlation and disorder has been
reported in these systems using a number of different methods [4]. From an experimental
point of view, works emphasizing different geometries in open and closed systems have
been reported and transport through a quantum dot embbeded in the ring has been studied
[5].

We study the persistent currents flowing in a mesoscopic ring threaded by a magnetic
flux and connected to a stub of finite length. A change in the magnetic field produces
level crossings and eventually an interchange of position between the ground state and the
first excited level. This crossing gives rise to metastable situations. A metastable state
corresponds to a local minimum of the energy in the parameter space separated by an
energy barrier from the absolute minimum. So, if this particular state is obtained through
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an adiabatic variation of the magnetic flux, the system is unable to reach its ground state
remaining in the relative local minimum.

This multistability can occur in a interacting perfect ring and also in a inhomogeneous
one, as is the case of a perfect ring plus a stub of finite length. In this last case the stub
acts as a reservoir of particles and the magnetic flux crossing the ring plays the role that the
external applied potential fulfills in transport in standard mesoscopic heterostructures. This
system has already been studied [6] focusing on other properties, within the context of the
electrochemical capacity ideas. The structure is described by a tight-binding Hamiltonian
given by

Ĥr = −t

Nr∑
σ,i=1

ĉ
†
i,σ ĉi+1,σ +

Nr∑
σ,σ ′,j,i=1

U
σ,σ ′
i,j n̂c

i,σ n̂c
j,σ ′ (2)
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Ns∑
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Ns∑
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n̂d
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Ĥi = −t0
∑

σ

ĉ
†
1,σ d̂1,σ + CC (4)

whereĤr corresponds to the ring,̂Hs to the stub, which is a wire of finite length connected
to the ring through the Hamiltonian̂Hi and Nr and Ns are the numbers of atomic sites
belonging to the ring and to the stub respectively. For the ring, it is assumed thatNr +1 = 1,
and the magnetic flux is incorporated as the boundary condition (1).

We model the gate potential which controls the state of charge of the stub through the
diagonal elements of̂Hs given byVo. For the case of ballistic transport in an isolated ring,
we have verified that the properties of the system are weakly dependent upon the spatial
range of the e–e interaction. The effects of non-locality in the Coulomb interaction could be
restricted to the first-neighbour intersite electronic repulsionU1 that controls the effects that
the charge accumulated in the stub has on the currents circulating along the ring. Restricted
to the intrasite and first-neighbour intersite contributions, the Coulomb interaction can be
written asU

σ,σ ′
i,j = U0δi,j δσ ′,−σ + U1(δj,i−1 + δj,1+1).

The current is characterized by an energy scale that is given by the energy difference
between two successive states below the Fermi level (EF ). For small values ofEF it turns
out to be

δE = 4π2t2(2n + 1)/N2
r (5)

wheren is the integer number that defines the state wave vectork = 2πn/Nra, wherea is
the lattice parameter. Although due to numerical limitations we are obliged to take a ring
with a small number of atoms, it is possible to obtain an adequate physical representation
of the system by scaling the Coulomb parametersU0 and U1 to the energy differenceδE
defined at the neighbourhood of the Fermi level.

The size of a disordered ring is an extremely important parameter in studying the
properties of persistent currents because the localization length of the states near the Fermi
energy defines a characteristic length in the system. The behaviour is different whether the
size of the ring is larger or smaller than this magnitude. However, for an ordered ring,
the absence of this length permits us to take an ideal small 1D loop to study a real ring.
To be able to solve the problem in an exact numerical way we restrict the study to the
one-channel problem. This is not a severe limitation because nowadays it is possible to
build up mesoscopic wires thin enough to have sufficent energy separation of the different
channels created by the lateral confinement [7].
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To find the ground state we use a standard Lanczos algorithm. The knowledge of this
permits us to calculate several quantities of interest for the problem: the current in the ring,
the charge in the stub and the total spin of the ground state as function of the external
magnetic flux and of the gate potentialVo. The current is calculated as the mean value on
the ground state of the operatorĴ :

Ĵ = (4πet/h) Im

( Nr∑
σ,i=1

(
ĉ
†
i,σ ĉi+1,σ − ĉ

†
i+1,σ ĉo,σ

))
. (6)

2. Results

We study first an ordered ring by assuming thatt0 = 0. The persistent current of the
non-interacting ring can be understood if we assume that the one-particle energy levels
move along the free particle dispersion relation as the magnetic field increases, reducing
the energy difference between the levels that correspond to the wave vector−2πi/Nra and
2π(i + 1)/Nra for an arbitrary integeri.

When the system possesses 2n particles there is an accidental degeneracy between the
state withS = 0 andS = 1, whereS is the spin of the many-body state. This occurs for
a magnetic fluxφ∗ = φ0/2 for the case in whichn is an odd integer, or whenφ∗ = 0 if
n is even. It is important to notice that the state withS = 1 is the ground state only for
this particular value of flux (φ∗). If φ = φ∗ + ε, whereε is an arbitrary small number,
the ground state is in theS = 0 subspace. In this case there is degeneracy but not level
crossing.

The Coulomb forces between the electrons shift the accidental degeneracy to other
values ofφ∗: φ∗ < φ0/2 for n even andφ∗ > 0 for n odd as it is shown in figure 1. It is
straightforward to realize that it is the Coulomb forces which originate the level crossing.

When the number of particles is odd there is no accidental degeneracy for the non-
interacting case. However, for interacting electrons the states withS = 3/2 andS = 1/2
could coincide in energy forφ = φ∗, 0 < φ∗ < φ0/2, if the electronic repulsion were
greater than the kinetic energy difference between the last two occupied levels.

The two many-body solutions mentioned above interchange their condition of being the
ground state and the first excited state atφ = φ∗. If U is small enough, a perturbative
argument can be given as follows. Let us suppose that the system has an even number of
electrons and that its ground state hasS = 0. Increasing the magnetic flux, whenφ > φ∗
the system could reduce its energy by occupying the state with total spinS = 1. Here the
two electrons next to the Fermi level are unpaired: one has a positive wave vectork and the
other a negative one and both the same value ofSz. However, for this process to take place
during an adiabatic evolution, the system has to go through an intermediate state in which
one of the electrons hops from the state with positivek to another with negative value of
k without flipping its spin. Due to the Coulomb interaction, the energy of the intermediate
state is greater than the energy of the flipped spin final stateS = 1, and also is greater than
the energy of the initial stateS = 0 due to its greater kinetic energy, so it defines the top of
a potential barrier which separates the two states. Under the hypothesis of thermodynamic
equilibrium, atφ = φ∗ the system changes its current discontinuously from a positive to a
negative value only if there is present an external spin flip mechanism capable of overcoming
the potential barrier that exists separating the two states in phase space. Although the spin
characterizes the two bistable states, the phenomenon is not connected to this incidental fact.
The bistability is a result of the level crossing of the two lowest-energy solutions which are
relative minima and stable in phase space. As a consequence, an adiabatic increase of the
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Figure 1. (a) Two particles in a 12-site ring. The energy is measured in units of the parameter
t : (i) is the energy of theS = 0 state withU0 = 0, (ii) is the energy of theS = 1 state and (iii)
is the energy of theS = 0 state withU0 = 0.5t . (b) Four particles in a ten-sites ring : (i) is
the energy of theS = 0 state withU0 = 0, (ii) is the energy of theS = 0 state withU0 = 0.5t ,
(iii) is the energy of theS = 1 state withU0 = 0 and (iv) is the energy of theS = 1 state with
U0 = 0.5t .

magnetic field will not always maintain the system in its ground state.
Numerically this adiabatic process can be simulated as follows. It is necessary to obtain

the ground state of the system threaded by a fluxφ1 = φ0 + δφ whereδφ is an arbitrary
small flux. The wave function|α0(φ0)〉 corresponding to the ground state of the system
under the effect of the fluxφ0 is taken as the starting state to begin the process. This state
has a total spinS0 and a total wave vectorK(φ0). It can be written as a linear combination
of eigenstates of the Hamiltonian with fluxφ1, |αn(φ1)〉,

|α0(φ0)〉 =
∑

n

an

∣∣αn

(
φ1

)〉
. (7)

Note that a change in the magnetic flux produces a spread of the state over the quantum
numberK but not in theS quantum number. Let us call the state that provides the dominant
contribution to equation (7) by|αn0(φ1)〉, which possesses the total wave vectorK(φ1)

closest to the originalK(φ0), and the same total spin (S0) as the|α0(φ0)〉 state (within the
numerical precision).

It is fundamental to know whether in this process the system will remain in a unstable
or metastable situation or not. To clarify this point, let us define the three-dimensional
space(S, K, E) whereS, K andE are the total spin, the total wave vector and the energy
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Figure 2. (a) Current versus flux for two particles in a 12-site ring andU0 = 0.5t : the open
squares correspond to the ground state; the continuous line corresponds to the current of the
metastable states. (b) Current versus flux for four particles in a ten-site ring andU0 = 0.5t : the
open squares correspond to the ground state; the continuous line corresponds to the current of
the metastable states. The current is measured in units of 4πte/h.

respectively. The behaviour of the system will depend on the topology of this space in the
neighbourhood of the starting point defined by the state|α0(φ0)〉. Suppose that the point
corresponding toS0 andK(φ1) is an absolute minimum for the energy. Then, the system
evolving from a small region around this point will go always towards it. Now, suppose
that there is another minimum, which belongs to a different (S, K) subspace, and that it
is the true absolute minimum. The existence of this minimum will modify the topology of
the space around the starting pointS0, K(φ0). However, if the energy difference between
the two minima is not great enough, the topology within a small vicinity of the starting
point will remain unchanged. Then, the system evolving adiabatically from this point will
continue going toward theS0, K(φ1) state.

An ideal tool to study this problem is the modified Lanczos alghorithm used to find
the ground state of the system. Ths method requires the definition of a new state|β〉 by
applying the Hamiltonian to the|α0(φ0)〉 state and subtracting the projection over it. The
Hamiltonian represented in the basis|α0(φ0)〉, |β〉 is diagonalized and the lowest-energy
state is taken as the starting new vector (as it is always a better approximation to the real
ground state). This procedure is continued until convergence is reached. In the process of
diagonalizing the 2× 2 matrix at each step the lowest of the two diagonal elements (dα, dβ)
determines the evolution of the initial state. The procedure follows a method in which the
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energy obtained at stepn is lower than the energy at stepn − 1. If the state|αn0(φ1)〉
does correspond to a minimum in the parameter space the process goes toward it, reducing
the energy at each step. In the opposite situation, at an arbitrary step of the procedure the
relation betweendα anddβ is inverted (dβ < dα) and the system evolves to the orthogonal
stateβ. The quantum numbers corresponding to this state are in general arbitrarily far
from the quantum numbers of the original state even forδφ infinitesimally small. This is a
procedure through which we are able to find numerically the frontiers of the bistable region.

Then, when the magnetic flux is changed adiabatically in the neighbourhood ofφ∗, it is
possible for the system to persist in a metastable state above and belowφ∗, depending on
whether the flux is increasing or decreasing. This introduces a hysteresis loop that appears
as a bistability in theI–φ characteristic curve as shown in figure 2 with a continuous line.

In standard double-barrier heterostructures (DBHs), transport involves non-linear
phenomena reflected in the observation of multiple stabilities in theI–V characteristic
curve in the region where the device exhibits a negative differential conduction [8]. This
property can be thought to be produced by an accumulation of electronic charge in the well
at resonance and a rapid leakage of it when the applied voltage has just taken the device
out of resonance. This non-linear effect is essentially a result of the interaction between
the charges in the well and has been extensively studied theoretically assuming that the
potential profile seen by the carriers, as they go along, depends in a self-consistent way
upon the charge distribution [9].

For our system, a bistability very similar to the one described above for the DBH can be
obtained in theI–φ characteristic curve. This is because there is a part of the system, the
stub in our case, the well for the standard DBH, which is capable of acting as a reservoir
of particles controlled by the external applied potential for the case of the DBH or by the
external magnetic field or the gate potential in our case.

Let us focus our attention on the ring weakly coupled to the stub taking a smallt0. In
order to discuss conceptually the bistable behaviour, we define the energy per particleEα

such that the total energy of the system is given by

E =
∑

α

Eα〈n̂α〉 (8)

where

Eα = eα +
∑

i,j,σ,σ ′
U

σ,σ ′
i,j 〈n̂i,σ n̂j,σ ′ 〉/Ne (9)

and 〈...〉 corresponds to the mean value on the ground state of the operators involved.eα

refers to the energy of an electron without the Coulomb interaction andNe is the number
of electrons in the system.

In this case the phase space in which the bistability occurs is defined by the number
of particles in the stub and the total spin. The starting state to initialize the numerical
calculation is assumed to be the solution that corresponds to the previous smaller (greater)
magnetic flux orVo. This procedure simulates the behaviour of the system when the flux or
the gate potential is adiabatically increased (decreased). In figure 3 we present the variation
of the total energy and theEα levels of the ring and the stub as a function of the magnetic
flux for the case withU0 = 0.3, U1 = U0/2, t0 = 0.0001 andVo = 0 in units of the
parametert . For such a small value of the Coulomb parameters the pseudo-single-particle
description is valid. Also a small value of thet0 parameter implies that one of the variables
in the parameter space (the charge into the stub) becomes quasi-discrete. The pseudo-single-
particle description exhibits a flux-insensitive behaviour corresponding to a state localized
at the stub, and a flux-dependent state that describes a mobile particle inside the ring. Due
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Figure 3. Four particles in an eight-site ring weakly coupled to a four-site stub as shown
in the right inset of (a). The number of electrons in the ring isn. (a) The continuous line
represents the energy of the ground state. The crosses correspond to the energy obtained raising
the flux adiabatically from zero. The open squares represent the energy obtained decreasing the
flux adiabatically from the right ofφ2. It is also shown in the lower inset of the figure. (b)
Pseudo-single-particle levels of the system as a function of the magnetic flux. Open squares and
triangles correspond to the first and second levels of the ring respectively and the continuous
line to the first level of the stub. The energy is measured in units of the parametert .

to a change in the magnetic flux, when a charge goes from one part of the system to the
other, a finite shift of the levels of each subsystem occurs due to the Coulomb interaction
together with a modification of the total spin of the ground state. It is the dependence of
these levels with the state of charge, mainly in the stub but also in the ring, which drives
the bistability. The system can reduce its onergy atφ = φ∗ changing its charge distribution,
as shown in figure 3. However, along an adiabatic path as analysed above, these two states
of charge are separated in phase space by a potential barrier which vanishes for a particular
external magnetic fluxφ∗ when the transition occurs. At these values of the flux the energy
of the total system changes discontinuously.

In this example, the bistability is unfavoured by small values of the parameterst0 and
U0. For greater values ofU0, in order to obtain an interchange of charge between the
ring and the stub, it is necessary to produce energy variations that go beyond the range
allowed by the magnetic flux. So, in this case the gate potential is the relevant variable that
controls the phenomenology of the system. In figure 4 the dependence of the current onVo
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Figure 4. Four particles in an eight-site ring coupled to a four-site stub witht0 = 0.5t ,φ = 0.4φ0

andU0 = 4t . Open squares correspond to a process where the gate potential is decreasing slowly
from zero. The continuous line corresponds to a situation in which the gate potential is increased
adiabatically from−6. (a) Current as function of gate potential. FromV2 to the left the open
squares correspond to the ground state. FromV2 to the right the ground state corresponds to the
continuous line. Crosses represent the current of (n = 1, 2, 3) interacting particles in a perfect
ring. (b) Charge in the stub (left) and total spin (right axis) as a function of the gate potential.
The current is measured in units of 4πte/h.

is presented fort0 = 0.5t .
For this value oft0 the interchange of charge of the two subsystems permits the existence

of regions where the current in the ring is caused by a fractional number of electrons. There
are regions in which the charge is almost constant while in others it is highly dependent
upon the gate potential. There, the behaviour of the total spin of the ground state can change
as it occurs atV1 andV2 in figure 4. Associated with it a bistability appears, as discussed
above.

For a 1D DBH the Coulomb blockade effect reflects the fact that, as soon as one
electron enters the well region, the entrance of a second one is excluded simply because
it has to overcome the Coulomb repulsion produced by the first electron already inside it.
Here the Coulomb blockade phenomenon is an intra-site effect. An electron cannot flow
because another one is already occupying the region through which it has to go to become
an electrical carrier. In our case, there is an inter-site Coulomb blockade effect produced
by the repulsion that the charge inside the stub exercises over the flowing electrons within
the ring in the vicinity of the stub. This is reflected in a reduction of the current in the
regions where the charge is stable, independent ofVo, in comparison with the current that
corresponds to a perfect ring with the same state of charge.
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3. Conclusions

In conclusion we have presented a study of the many-body problem of an inhomogeneous
closed ring enclosing a magnetic flux. We have shown that these systems have a bistable
behaviour that can be associated with the physics of a non-linear system. We have also
studied the effect that the imperfection has upon the persistent current flowing along the
ring showing Coulomb blockade effect between the stub and the ring. The development
of sub-micrometre physics makes it possible to construct this sort of device. We hope the
predicted phenomenology could be a motivation for experimentalists to look for it in real
systems.
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